Coupling Artificial Neurons in BERT and Biological Neurons in the Human Brain

03/27/2023
by   Xu Liu, et al.
0

Linking computational natural language processing (NLP) models and neural responses to language in the human brain on the one hand facilitates the effort towards disentangling the neural representations underpinning language perception, on the other hand provides neurolinguistics evidence to evaluate and improve NLP models. Mappings of an NLP model's representations of and the brain activities evoked by linguistic input are typically deployed to reveal this symbiosis. However, two critical problems limit its advancement: 1) The model's representations (artificial neurons, ANs) rely on layer-level embeddings and thus lack fine-granularity; 2) The brain activities (biological neurons, BNs) are limited to neural recordings of isolated cortical unit (i.e., voxel/region) and thus lack integrations and interactions among brain functions. To address those problems, in this study, we 1) define ANs with fine-granularity in transformer-based NLP models (BERT in this study) and measure their temporal activations to input text sequences; 2) define BNs as functional brain networks (FBNs) extracted from functional magnetic resonance imaging (fMRI) data to capture functional interactions in the brain; 3) couple ANs and BNs by maximizing the synchronization of their temporal activations. Our experimental results demonstrate 1) The activations of ANs and BNs are significantly synchronized; 2) the ANs carry meaningful linguistic/semantic information and anchor to their BN signatures; 3) the anchored BNs are interpretable in a neurolinguistic context. Overall, our study introduces a novel, general, and effective framework to link transformer-based NLP models and neural activities in response to language and may provide novel insights for future studies such as brain-inspired evaluation and development of NLP models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset