Covariance-aware Feature Alignment with Pre-computed Source Statistics for Test-time Adaptation

04/28/2022
by   Kazuki Adachi, et al.
0

The accuracy of deep neural networks is degraded when the distribution of features in the test environment (target domain) differs from that of the training (source) environment. To mitigate the degradation, test-time adaptation (TTA), where a model adapts to the target domain without access to the source dataset, can be used in the test environment. However, the existing TTA methods lack feature distribution alignment between the source and target domains, which unsupervised domain adaptation mainly addresses, because accessing the source dataset is prohibited in the TTA setting. In this paper, we propose a novel TTA method, named Covariance-Aware Feature alignment (CAFe), which explicitly aligns the source and target feature distributions at test time. To perform alignment without accessing the source data, CAFe uses auxiliary feature statistics (mean and covariance) pre-computed on the source domain, which are lightweight and easily prepared. Further, to improve efficiency and stability, we propose feature grouping, which splits the feature dimensions into groups according to their correlations by using spectral clustering to avoid degeneration of the covariance matrix. We empirically show that CAFe outperforms prior TTA methods on a variety of distribution shifts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset