CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime

04/28/2021
by   Hengjie Yang, et al.
0

This paper identifies convolutional codes (CCs) used in conjunction with a CC-specific cyclic redundancy check (CRC) code as a promising paradigm for short blocklength codes. The resulting CRC-CC concatenated code naturally permits the use of the serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The CC of interest is of rate-1/ω and is either zero-terminated (ZT) or tail-biting (TB). For CRC-CC concatenated code designs, we show how to find the optimal CRC polynomial for a given ZTCC or TBCC. Our complexity analysis reveals that SLVD decoding complexity is a function of the terminating list rank, which converges to one at high SNR. This behavior allows the performance gains of SLVD to be achieved with a small increase in average complexity at the SNR operating point of interest. With a sufficiently large CC constraint length, the performance of CRC-CC concatenated code under SLVD approaches the random-coding union (RCU) bound as the CRC size is increased while average decoding complexity does not increase significantly. TB encoding further reduces the backoff from the RCU bound by avoiding the termination overhead. As a result, several CRC-TBCC codes outperform the RCU bound at moderate SNR values while permitting decoding with relatively low complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset