Cross Section Doppler Broadening prediction using Physically Informed Deep Neural Networks

08/11/2022
by   Arthur Pignet, et al.
0

Temperature dependence of the neutron-nucleus interaction is known as the Doppler broadening of the cross-sections. This is a well-known effect due to the thermal motion of the target nuclei that occurs in the neutron-nucleus interaction. The fast computation of such effects is crucial for any nuclear application. Mechanisms have been developed that allow determining the Doppler effects in the cross-section, most of them based on the numerical resolution of the equation known as Solbrig's kernel, which is a cross-section Doppler broadening formalism derived from a free gas atoms distribution hypothesis. This paper explores a novel non-linear approach based on deep learning techniques. Deep neural networks are trained on synthetic and experimental data, serving as an alternative to the cross-section Doppler Broadening (DB). This paper explores the possibility of using physically informed neural networks, where the network is physically regularized to be the solution of a partial derivative equation, inferred from Solbrig's kernel. The learning process is demonstrated by using the fission, capture, and scattering cross sections for ^235U in the energy range from thermal to 2250 eV.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro