Cross Tensor Approximation for Image and Video Completion

07/13/2022
by   Salman Ahmadi Asl, et al.
0

This paper proposes a general framework to use the cross tensor approximation or tensor CUR approximation for reconstructing incomplete images and videos. The new algorithms are simple and easy to be implemented with low computational complexity. For the case of data tensors with 1) structural missing components or 2) a high missing rate, we propose an efficient smooth tensor CUR algorithms which first make the sampled fibers smooth and then apply the proposed CUR algorithms. The main contribution of this paper is to develop/investigate improved multistage CUR algorithms with filtering (smoothing ) preprocessing for tensor completion. The second contribution is a detailed comparison of the performance of image recovery for four different CUR strategies via extensive computer simulations. Our simulations clearly indicated that the proposed algorithms are much faster than most of the existing state-of-the-art algorithms developed for tensor completion, while performance is comparable and often even better. Furthermore, we will provide in GitHub developed software in MATLAB which can be used for various applications. Moreover, to our best knowledge, the CUR (cross approximation) algorithms have not been investigated nor compared till now for image and video completion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset