Crypto Mining Makes Noise
A new cybersecurity attack (cryptojacking) is emerging, in both the literature and in the wild, where an adversary illicitly runs Crypto-clients software over the devices of unaware users. This attack has been proved to be very effective given the simplicity of running a Crypto-client into a target device, e.g., by means of web-based Java scripting. In this scenario, we propose Crypto-Aegis, a solution to detect and identify Crypto-clients network traffic–even when it is VPN-ed. In detail, our contributions are the following: (i) We identify and model a new type of attack, i.e., the sponge-attack, being a generalization of cryptojacking; (ii) We provide a detailed analysis of real network traffic generated by 3 major cryptocurrencies; (iii) We investigate how VPN tunneling shapes the network traffic generated by Crypto-clients by considering two major VPNbrands; (iv) We propose Crypto-Aegis, a Machine Learning (ML) based framework that builds over the previous steps to detect crypto-mining activities; and, finally, (v) We compare our results against competing solutions in the literature. Evidence from of our experimental campaign show the exceptional quality and viability of our solution–Crypto-Aegis achieves an F1-score of 0.96 and an AUC of 0.99. Given the extent and novelty of the addressed threat we believe that our approach and our results, other than being interesting on their own, also pave the way for further research in this area.
READ FULL TEXT