Cycled Compositional Learning between Images and Text

07/24/2021
by   Jongseok Kim, et al.
0

We present an approach named the Cycled Composition Network that can measure the semantic distance of the composition of image-text embedding. First, the Composition Network transit a reference image to target image in an embedding space using relative caption. Second, the Correction Network calculates a difference between reference and retrieved target images in the embedding space and match it with a relative caption. Our goal is to learn a Composition mapping with the Composition Network. Since this one-way mapping is highly under-constrained, we couple it with an inverse relation learning with the Correction Network and introduce a cycled relation for given Image We participate in Fashion IQ 2020 challenge and have won the first place with the ensemble of our model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset