CycleGAN for Interpretable Online EMT Compensation

01/05/2021
by   Henry Krumb, et al.
0

Purpose: Electromagnetic Tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error. Methods: Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN). 3D positions are translated from various bedside environments to their bench equivalents. Domain-translated points are fine-tuned to reduce error in the bench domain. We evaluate our compensation approach in a phantom experiment. Results: Since the domain-translation approach maps distorted points to their lab equivalents, predictions are consistent among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom experiment demonstrates that our approach generalizes well to an unseen C-arm environment. Conclusion: Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational error compensation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro