Dark Reciprocal-Rank: Boosting Graph-Convolutional Self-Localization Network via Teacher-to-student Knowledge Transfer

11/01/2020
by   Koji Takeda, et al.
0

In visual robot self-localization, graph-based scene representation and matching have recently attracted research interest as robust and discriminative methods for selflocalization. Although effective, their computational and storage costs do not scale well to large-size environments. To alleviate this problem, we formulate self-localization as a graph classification problem and attempt to use the graph convolutional neural network (GCN) as a graph classification engine. A straightforward approach is to use visual feature descriptors that are employed by state-of-the-art self-localization systems, directly as graph node features. However, their superior performance in the original self-localization system may not necessarily be replicated in GCN-based self-localization. To address this issue, we introduce a novel teacher-to-student knowledge-transfer scheme based on rank matching, in which the reciprocal-rank vector output by an off-the-shelf state-of-the-art teacher self-localization model is used as the dark knowledge to transfer. Experiments indicate that the proposed graph-convolutional self-localization network can significantly outperform state-of-the-art self-localization systems, as well as the teacher classifier.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro