DarSwin: Distortion Aware Radial Swin Transformer

04/19/2023
by   Akshaya Athwale, et al.
0

Wide-angle lenses are commonly used in perception tasks requiring a large field of view. Unfortunately, these lenses produce significant distortions making conventional models that ignore the distortion effects unable to adapt to wide-angle images. In this paper, we present a novel transformer-based model that automatically adapts to the distortion produced by wide-angle lenses. We leverage the physical characteristics of such lenses, which are analytically defined by the radial distortion profile (assumed to be known), to develop a distortion aware radial swin transformer (DarSwin). In contrast to conventional transformer-based architectures, DarSwin comprises a radial patch partitioning, a distortion-based sampling technique for creating token embeddings, and a polar position encoding for radial patch merging. We validate our method on classification tasks using synthetically distorted ImageNet data and show through extensive experiments that DarSwin can perform zero-shot adaptation to unseen distortions of different wide-angle lenses. Compared to other baselines, DarSwin achieves the best results (in terms of Top-1 and -5 accuracy), when tested on in-distribution data, with almost 2 under medium (high) distortion levels, and comparable to the state-of-the-art under low and very low distortion levels (perspective-like images).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset