Data-Centric AI Requires Rethinking Data Notion

10/06/2021
by   Mustafa Hajij, et al.
0

The transition towards data-centric AI requires revisiting data notions from mathematical and implementational standpoints to obtain unified data-centric machine learning packages. Towards this end, this work proposes unifying principles offered by categorical and cochain notions of data, and discusses the importance of these principles in data-centric AI transition. In the categorical notion, data is viewed as a mathematical structure that we act upon via morphisms to preserve this structure. As for cochain notion, data can be viewed as a function defined in a discrete domain of interest and acted upon via operators. While these notions are almost orthogonal, they provide a unifying definition to view data, ultimately impacting the way machine learning packages are developed, implemented, and utilized by practitioners.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset