Data-Driven Identification of Rayleigh-Damped Second-Order Systems
In this paper, we present a data-driven approach to identify second-order systems, having internal Rayleigh damping. This means that the damping matrix is given as a linear combination of the mass and stiffness matrices. These systems typically appear when performing various engineering studies, e.g., vibrational and structural analysis. In an experimental setup, the frequency response of a system can be measured via various approaches, for instance, by measuring the vibrations using an accelerometer. As a consequence, given frequency samples, the identification of the underlying system relies on rational approximation. To that aim, we propose an identification of the corresponding second-order system, extending the Loewner framework for this class of systems. The efficiency of the proposed method is demonstrated by means of various numerical benchmarks.
READ FULL TEXT