Data-driven Real-time Short-term Prediction of Air Quality: Comparison of ES, ARIMA, and LSTM

11/16/2022
by   Iryna Talamanova, et al.
0

Air pollution is a worldwide issue that affects the lives of many people in urban areas. It is considered that the air pollution may lead to heart and lung diseases. A careful and timely forecast of the air quality could help to reduce the exposure risk for affected people. In this paper, we use a data-driven approach to predict air quality based on historical data. We compare three popular methods for time series prediction: Exponential Smoothing (ES), Auto-Regressive Integrated Moving Average (ARIMA) and Long short-term memory (LSTM). Considering prediction accuracy and time complexity, our experiments reveal that for short-term air pollution prediction ES performs better than ARIMA and LSTM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro