Data-Driven Symbol Detection via Model-Based Machine Learning

02/14/2020
by   Nariman Farsad, et al.
0

The design of symbol detectors in digital communication systems has traditionally relied on statistical channel models that describe the relation between the transmitted symbols and the observed signal at the receiver. Here we review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms. In this hybrid approach, well-known channel-model-based algorithms such as the Viterbi method, BCJR detection, and multiple-input multiple-output (MIMO) soft interference cancellation (SIC) are augmented with ML-based algorithms to remove their channel-model-dependence, allowing the receiver to learn to implement these algorithms solely from data. The resulting data-driven receivers are most suitable for systems where the underlying channel models are poorly understood, highly complex, or do not well-capture the underlying physics. Our approach is unique in that it only replaces the channel-model-based computations with dedicated neural networks that can be trained from a small amount of data, while keeping the general algorithm intact. Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship and in the presence of channel state information uncertainty.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset