Data-Driven Vehicle Trajectory Forecasting
An active area of research is to increase the safety of self-driving vehicles. Although safety cannot be guarenteed completely, the capability of a vehicle to predict the future trajectories of its surrounding vehicles could help ensure this notion of safety to a greater deal. We cast the trajectory forecast problem in a multi-time step forecasting problem and develop a Convolutional Neural Network based approach to learn from trajectory sequences generated from completely raw dataset in real-time. Results show improvement over baselines.
READ FULL TEXT