Data Valuation for Vertical Federated Learning: An Information-Theoretic Approach

12/15/2021
by   Xiao Han, et al.
0

Federated learning (FL) is a promising machine learning paradigm that enables cross-party data collaboration for real-world AI applications in a privacy-preserving and law-regulated way. How to valuate parties' data is a critical but challenging FL issue. In the literature, data valuation either relies on running specific models for a given task or is just task irrelevant; however, it is often requisite for party selection given a specific task when FL models have not been determined yet. This work thus fills the gap and proposes FedValue, to our best knowledge, the first privacy-preserving, task-specific but model-free data valuation method for vertical FL tasks. Specifically, FedValue incorporates a novel information-theoretic metric termed Shapley-CMI to assess data values of multiple parties from a game-theoretic perspective. Moreover, a novel server-aided federated computation mechanism is designed to compute Shapley-CMI and meanwhile protects each party from data leakage. We also propose several techniques to accelerate Shapley-CMI computation in practice. Extensive experiments on six open datasets validate the effectiveness and efficiency of FedValue for data valuation of vertical FL tasks. In particular, Shapley-CMI as a model-free metric performs comparably with the measures that depend on running an ensemble of well-performing models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset