Death by AI: Where Assured Autonomy in Smart Cities Meets the End-to-End Argument
A smart city involves critical infrastructure systems that have been digitally enabled. Increasingly, many smart city cyber-physical systems are becoming automated. The extent of automation ranges from basic logic gates to sophisticated, artificial intelligence (AI) that enables fully autonomous systems. Because of modern society's reliance on autonomous systems in smart cities, it is crucial for them to operate in a safe manner; otherwise, it is feasible for these systems to cause considerable physical harm or even death. Because smart cities could involve thousands of autonomous systems operating in concert in densely populated areas, safety assurances are required. Challenges abound to consistently manage the safety of such autonomous systems due to their disparate developers, manufacturers, operators and users. A novel network and a sample of associated network functions for autonomous systems is proposed that aims to provide a baseline of safety for autonomous systems. This is accomplished by establishing a custom-designed network for autonomous systems that is separate from the Internet, and can handle certain functions that enable safety through active networking. Such a network design sits at the margins of the end-to-end principle, which is warranted considering the safety of autonomous systems is at stake as is argued in this paper. Without a scalable safety strategy for autonomous systems as proposed, assured autonomy in smart cities will remain elusive.
READ FULL TEXT