Decision-Directed Data Decomposition

09/18/2019
by   Brent D. Davis, et al.
0

We present an algorithm, Decision-Directed Data Decomposition, which decomposes a dataset into two components. The first contains most of the useful information for a specified supervised learning task, and the second orthogonal component that contains little information about the task. The algorithm is simple and scalable. It can use kernel techniques to help preserve desirable information in the decomposition. We illustrate its application to tasks in two domains, using distributed representations of words and images, and we report state-of-the-art results showcasing D_4's capability to remove information pertaining to gender from word embeddings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset