Decoding Short LDPC Codes via BP-RNN Diversity and Reliability-Based Post-Processing

06/24/2022
by   Joachim Rosseel, et al.
0

This paper investigates decoder diversity architectures for short low-density parity-check (LDPC) codes, based on recurrent neural network (RNN) models of the belief-propagation (BP) algorithm. We propose a new approach to achieve decoder diversity, by specializing BP-RNN decoders to specific classes of errors, with absorbing set support. We further combine our approach with an ordered statistics decoding (OSD) post-processing step. We show that the OSD post-processing step effectively takes advantage of the bit-error rate optimization, deriving from the use of binary cross-entropy loss function, and the diversity brought by the use of multiple BP-RNN decoders, thus providing an efficient way to bridge the gap to maximum likelihood decoding.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset