Decorated Linear Relations: Extending Gaussian Probability with Uninformative Priors

04/29/2022
by   Dario Stein, et al.
0

We introduce extended Gaussian distributions as a precise and principled way of combining Gaussian probability uninformative priors, which indicate complete absence of information. To give an extended Gaussian distribution on a finite-dimensional vector space X is to give a subspace D, along which no information is known, together with a Gaussian distribution on the quotient X/D. We show that the class of extended Gaussians remains closed under taking conditional distributions. We then introduce decorated linear maps and relations as a general framework to combine probability with nondeterminism on vector spaces, which includes extended Gaussians as a special case. This enables us to apply methods from categorical logic to probability, and make connections to the semantics of probabilistic programs with exact conditioning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset