Deductive Proof of Ethereum Smart Contracts Using Why3

04/25/2019
by   Zeinab Nehai, et al.
0

A bug or error is a common problem that any software or computer program may encounter. It can occur from badly writing the program, a typing error or bad memory management. However, errors can become a significant issue if the unsafe program is used for critical systems. Therefore, formal methods for these kinds of systems are greatly required. In this paper, we use a formal language that performs deductive verification on an Ethereum Blockchain application based on smart contracts, which are self-executing digital contracts. Blockchain systems manipulate cryptocurrency and transaction information. Therefore , if a bug occurs in the blockchain, serious consequences such as a loss of money can happen. Thus, the aim of this paper is to propose a language dedicated to deductive verification, called Why3, as a new language for writing formal and verified smart contracts, thereby avoiding attacks exploiting such contract execution vulnerabilities. We first write a Why3 smart contracts program; next we formulate specifications to be proved as absence of RunTime Error properties and functional properties, then we verify the behavior of the program using the Why3 system. Finally we compile the Why3 contracts to the Ethereum Virtual Machine (EVM). Moreover, we give a set of generic mathematical statements that allows verifying functional properties suited to any type of smart contracts holding cryptocurrency, showing that Why3 can be a suitable language to write smart contracts. To illustrate our approach, we describe its application to a realistic industrial use case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset