Deep conv-attention model for diagnosing left bundle branch block from 12-lead electrocardiograms

12/07/2022
by   Alireza Sadeghi, et al.
0

Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08 specificity: 99.33+-0.11 operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset