Deep Coupled-Representation Learning for Sparse Linear Inverse Problems with Side Information

07/04/2019
by   Evaggelia Tsiligianni, et al.
0

In linear inverse problems, the goal is to recover a target signal from undersampled, incomplete or noisy linear measurements. Typically, the recovery relies on complex numerical optimization methods; recent approaches perform an unfolding of a numerical algorithm into a neural network form, resulting in a substantial reduction of the computational complexity. In this paper, we consider the recovery of a target signal with the aid of a correlated signal, the so-called side information (SI), and propose a deep unfolding model that incorporates SI. The proposed model is used to learn coupled representations of correlated signals from different modalities, enabling the recovery of multimodal data at a low computational cost. As such, our work introduces the first deep unfolding method with SI, which actually comes from a different modality. We apply our model to reconstruct near-infrared images from undersampled measurements given RGB images as SI. Experimental results demonstrate the superior performance of the proposed framework against single-modal deep learning methods that do not use SI, multimodal deep learning designs, and optimization algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset