Deep Feature Learning for Graphs

04/28/2017
by   Ryan A. Rossi, et al.
0

This paper presents a general graph representation learning framework called DeepGL for learning deep node and edge representations from large (attributed) graphs. In particular, DeepGL begins by deriving a set of base features (e.g., graphlet features) and automatically learns a multi-layered hierarchical graph representation where each successive layer leverages the output from the previous layer to learn features of a higher-order. Contrary to previous work, DeepGL learns relational functions (each representing a feature) that generalize across-networks and therefore useful for graph-based transfer learning tasks. Moreover, DeepGL naturally supports attributed graphs, learns interpretable features, and is space-efficient (by learning sparse feature vectors). In addition, DeepGL is expressive, flexible with many interchangeable components, efficient with a time complexity of O(|E|), and scalable for large networks via an efficient parallel implementation. Compared with the state-of-the-art method, DeepGL is (1) effective for across-network transfer learning tasks and attributed graph representation learning, (2) space-efficient requiring up to 6x less memory, (3) fast with up to 182x speedup in runtime performance, and (4) accurate with an average improvement of 20

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset