Deep Gaussian Conditional Random Field Network: A Model-based Deep Network for Discriminative Denoising

11/12/2015
by   Raviteja Vemulapalli, et al.
0

We propose a novel deep network architecture for image denoising based on a Gaussian Conditional Random Field (GCRF) model. In contrast to the existing discriminative denoising methods that train a separate model for each noise level, the proposed deep network explicitly models the input noise variance and hence is capable of handling a range of noise levels. Our deep network, which we refer to as deep GCRF network, consists of two sub-networks: (i) a parameter generation network that generates the pairwise potential parameters based on the noisy input image, and (ii) an inference network whose layers perform the computations involved in an iterative GCRF inference procedure. We train the entire deep GCRF network (both parameter generation and inference networks) discriminatively in an end-to-end fashion by maximizing the peak signal-to-noise ratio measure. Experiments on Berkeley segmentation and PASCALVOC datasets show that the proposed deep GCRF network outperforms state-of-the-art image denoising approaches for several noise levels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset