Deep Generative Modeling of LiDAR Data

12/04/2018
by   Lucas Caccia, et al.
1

Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored on many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a multi-channel 2D signal. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. Furthermore, we demonstrate that our method is robust to noisy input - the learned model can recover the underlying lidar scan from seemingly uninformative data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro