Deep Graph Clustering via Mutual Information Maximization and Mixture Model

05/10/2022
by   Maedeh Ahmadi, et al.
0

Attributed graph clustering or community detection which learns to cluster the nodes of a graph is a challenging task in graph analysis. In this paper, we introduce a contrastive learning framework for learning clustering-friendly node embedding. Although graph contrastive learning has shown outstanding performance in self-supervised graph learning, using it for graph clustering is not well explored. We propose Gaussian mixture information maximization (GMIM) which utilizes a mutual information maximization approach for node embedding. Meanwhile, it assumes that the representation space follows a Mixture of Gaussians (MoG) distribution. The clustering part of our objective tries to fit a Gaussian distribution to each community. The node embedding is jointly optimized with the parameters of MoG in a unified framework. Experiments on real-world datasets demonstrate the effectiveness of our method in community detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset