Deep Learning-based Data-aided Activity Detection with Extraction Network in Grant-free Sparse Code Multiple Access Systems

05/13/2023
by   Minsig Han, et al.
0

This letter proposes a deep learning-based data-aided active user detection network (D-AUDN) for grant-free sparse code multiple access (SCMA) systems that leverages both SCMA codebook and Zadoff-Chu preamble for activity detection. Due to disparate data and preamble distribution as well as codebook collision, existing D-AUDNs experience performance degradation when multiple preambles are associated with each codebook. To address this, a user activity extraction network (UAEN) is integrated within the D-AUDN to extract a-priori activity information from the codebook, improving activity detection of the associated preambles. Additionally, efficient SCMA codebook design and Zadoff-Chu preamble association are considered to further enhance performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro