Deep Learning: Extrapolation Tool for Ab Initio Nuclear Theory

10/06/2018
by   Gianina Alina Negoita, et al.
0

Ab initio approaches in nuclear theory, such as the No-Core Shell Model (NCSM), have been developed for approximately solving finite nuclei with realistic strong interactions. The NCSM and other approaches require an extrapolation of the results obtained in a finite basis space to the infinite basis space limit and assessment of the uncertainty of those extrapolations. Each observable requires a separate extrapolation and most observables have no proven extrapolation method. We propose a feed-forward artificial neural network (ANN) method as an extrapolation tool to obtain the ground state energy and the ground state point-proton root-mean-square (rms) radius along with their extrapolation uncertainties. The designed ANNs are sufficient to produce results for these two very different observables in ^6Li from the ab initio NCSM results in small basis spaces that satisfy the following theoretical physics condition: independence of basis space parameters in the limit of extremely large matrices. Comparisons of the ANN results with other extrapolation methods are also provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset