Deep Learning for Cardiologist-level Myocardial Infarction Detection in Electrocardiograms

12/16/2019
by   Arjun Gupta, et al.
33

Heart disease is the leading cause of death worldwide. Amongst patients with cardiovascular diseases, myocardial infarction is the main cause of death. In order to provide adequate healthcare support to patients who may experience this clinical event, it is essential to gather supportive evidence in a timely manner to help secure a correct diagnosis. In this article, we study the feasibility of using deep learning to identify suggestive electrocardiographic (ECG) changes that may correctly classify heart conditions using the Physikalisch-Technische Bundesanstalt (PTB) database. As part of this study, we systematically quantify the contribution of each ECG lead to correctly tell apart a healthy from an unhealthy heart. For such a study we fine-tune the ConvNetQuake neural network model, which was originally designed to identify earthquakes. Our findings indicate that out of 15 ECG leads, data from the v6 and vz leads are critical to correctly identify myocardial infarction. Based on these findings, we modify ConvNetQuake to simultaneously take in raw ECG data from leads v6 and vz, achieving 99.43% classification accuracy, which represents cardiologist-level performance level for myocardial infarction detection after feeding only 10 seconds of raw ECG data to our neural network model. This approach differs from others in the community in that the ECG data fed into the neural network model does not require any kind of manual feature extraction or pre-processing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset