Deep Learning for Intelligent Wireless MAC: Exploiting Real Data Sampled on 2.4GHz Frequency Band

06/18/2021
by   Jiantao Xin, et al.
0

The existing medium access control (MAC) protocol of Wi-Fi networks (i.e., CSMA/CA) suffers from poor performance in large networks due to its incapability of handling transmission collisions. This drawback dramatically reduces the spectrum efficiency of Wi-Fi networks. To cope with this issue, we investigate a deep-learning (DL) based intelligent wireless MAC protocol, referred to as DL-MAC, to improve the spectrum efficiency of Wi-Fi networks. The goal of DL-MAC is to enable not only intelligent channel access, but also intelligent rate adaption to increase the throughput. Notably, our DL-MAC protocol is designed for the 2.4GHz frequency band and exploits the real wireless data sampled from actual environments that consist of many working devices. We design a deep neural network (DNN) that is trained using the sampled real data after data processing and exploit the trained DNN to implement our DL-MAC. The experimental results demonstrate that the DL-MAC protocol can achieve high throughput than CSMA/CA channel access and traditional rate adaptions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro