Deep Multi Depth Panoramas for View Synthesis

08/04/2020
by   Kai-En Lin, et al.
1

We propose a learning-based approach for novel view synthesis for multi-camera 360^∘ panorama capture rigs. Previous work constructs RGBD panoramas from such data, allowing for view synthesis with small amounts of translation, but cannot handle the disocclusions and view-dependent effects that are caused by large translations. To address this issue, we present a novel scene representation - Multi Depth Panorama (MDP) - that consists of multiple RGBDα panoramas that represent both scene geometry and appearance. We demonstrate a deep neural network-based method to reconstruct MDPs from multi-camera 360^∘ images. MDPs are more compact than previous 3D scene representations and enable high-quality, efficient new view rendering. We demonstrate this via experiments on both synthetic and real data and comparisons with previous state-of-the-art methods spanning both learning-based approaches and classical RGBD-based methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset