Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex

06/06/2018
by   Hongyang Zhang, et al.
0

Several recently proposed architectures of neural networks such as ResNeXt, Inception, Xception, SqueezeNet and Wide ResNet are based on the designing idea of having multiple branches and have demonstrated improved performance in many applications. We show that one cause for such success is due to the fact that the multi-branch architecture is less non-convex in terms of duality gap. The duality gap measures the degree of intrinsic non-convexity of an optimization problem: smaller gap in relative value implies lower degree of intrinsic non-convexity. The challenge is to quantitatively measure the duality gap of highly non-convex problems such as deep neural networks. In this work, we provide strong guarantees of this quantity for two classes of network architectures. For the neural networks with arbitrary activation functions, multi-branch architecture and a variant of hinge loss, we show that the duality gap of both population and empirical risks shrinks to zero as the number of branches increases. This result sheds light on better understanding the power of over-parametrization where increasing the network width tends to make the loss surface less non-convex. For the neural networks with linear activation function and ℓ_2 loss, we show that the duality gap of empirical risk is zero. Our two results work for arbitrary depths and adversarial data, while the analytical techniques might be of independent interest to non-convex optimization more broadly. Experiments on both synthetic and real-world datasets validate our results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset