Deep Polyphonic ADSR Piano Note Transcription

06/21/2019
by   Rainer Kelz, et al.
0

We investigate a late-fusion approach to piano transcription, combined with a strong temporal prior in the form of a handcrafted Hidden Markov Model (HMM). The network architecture under consideration is compact in terms of its number of parameters and easy to train with gradient descent. The network outputs are fused over time in the final stage to obtain note segmentations, with an HMM whose transition probabilities are chosen based on a model of attack, decay, sustain, release (ADSR) envelopes, commonly used for sound synthesis. The note segments are then subject to a final binary decision rule to reject too weak note segment hypotheses. We obtain state-of-the-art results on the MAPS dataset, and are able to outperform other approaches by a large margin, when predicting complete note regions from onsets to offsets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset