Deep Reinforcement Learning for Fog Computing-based Vehicular System with Multi-operator Support

04/04/2020
by   Xiaohan Zhang, et al.
0

This paper studies the potential performance improvement that can be achieved by enabling multi-operator wireless connectivity for cloud/fog computing-connected vehicular systems. Mobile network operator (MNO) selection and switching problem is formulated by jointly considering switching cost, quality-of-service (QoS) variations between MNOs, and the different prices that can be charged by different MNOs as well as cloud and fog servers. A double deep Q network (DQN) based switching policy is proposed and proved to be able to minimize the long-term average cost of each vehicle with guaranteed latency and reliability performance. The performance of the proposed approach is evaluated using the dataset collected in a commercially available city-wide LTE network. Simulation results show that our proposed policy can significantly reduce the cost paid by each fog/cloud-connected vehicle with guaranteed latency services.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset