Deep Reinforcement Learning for Solving the Vehicle Routing Problem
We present an end-to-end framework for solving Vehicle Routing Problem (VRP) using deep reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. Our method is faster in both training and inference than a recent method that solves the Traveling Salesman Problem (TSP), with nearly identical solution quality. On the more general VRP, our approach outperforms classical heuristics on medium-sized instances in both solution quality and computation time (after training). Our proposed framework can be applied to variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
READ FULL TEXT