Deep Reinforcement Learning Using Hybrid Quantum Neural Network

04/20/2023
by   Hao-Yuan Chen, et al.
0

Quantum computation has a strong implication for advancing the current limitation of machine learning algorithms to deal with higher data dimensions or reducing the overall training parameters for a deep neural network model. Based on a gate-based quantum computer, a parameterized quantum circuit was designed to solve a model-free reinforcement learning problem with the deep-Q learning method. This research has investigated and evaluated its potential. Therefore, a novel PQC based on the latest Qiskit and PyTorch framework was designed and trained to compare with a full-classical deep neural network with and without integrated PQC. At the end of the research, the research draws its conclusion and prospects on developing deep quantum learning in solving a maze problem or other reinforcement learning problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro