Deep Stacked Stochastic Configuration Networks for Non-Stationary Data Streams

08/07/2018
by   Mahardhika Pratama, et al.
0

The concept of stochastic configuration networks (SCNs) others a solid framework for fast implementation of feedforward neural networks through randomized learning. Unlike conventional randomized approaches, SCNs provide an avenue to select appropriate scope of random parameters to ensure the universal approximation property. In this paper, a deep version of stochastic configuration networks, namely deep stacked stochastic configuration network (DSSCN), is proposed for modeling non-stationary data streams. As an extension of evolving stochastic connfiguration networks (eSCNs), this work contributes a way to grow and shrink the structure of deep stochastic configuration networks autonomously from data streams. The performance of DSSCN is evaluated by six benchmark datasets. Simulation results, compared with prominent data stream algorithms, show that the proposed method is capable of achieving comparable accuracy and evolving compact and parsimonious deep stacked network architecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset