Defect reconstruction in a 2D semi-analytical waveguide model via derivative-based optimization
This paper considers the reconstruction of a defect in a two-dimensional waveguide using a derivative-based optimization approach. The propagation of the waves is simulated by the Scaled Boundary Finite Element Method (SBFEM) that builds on a semi-analytical approach. The simulated data is then fitted to a given set of data describing the reflection of a defect to be reconstructed. For this purpose, we apply an iteratively regularized Gauss-Newton method in combination with algorithmic differentiation to provide the required derivative information accurately and efficiently. We present numerical results for three different kinds of defects, namely a crack, a delamination, and a corrosion. These examples show that the parameterization of the defect can be reconstructed efficiently and robustly in the presence of noise.
READ FULL TEXT