Demonstration of InsightPilot: An LLM-Empowered Automated Data Exploration System
Exploring data is crucial in data analysis, as it helps users understand and interpret the data more effectively. However, performing effective data exploration requires in-depth knowledge of the dataset and expertise in data analysis techniques. Not being familiar with either can create obstacles that make the process time-consuming and overwhelming for data analysts. To address this issue, we introduce InsightPilot, an LLM (Large Language Model)-based, automated data exploration system designed to simplify the data exploration process. InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining. Then, these analysis intents are concretized by issuing corresponding intentional queries (IQueries) to create a meaningful and coherent exploration sequence. In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts and simplifies the exploration process for users. By employing an LLM to iteratively collaborate with a state-of-the-art insight engine via IQueries, InsightPilot is effective in analyzing real-world datasets, enabling users to gain valuable insights through natural language inquiries. We demonstrate the effectiveness of InsightPilot in a case study, showing how it can help users gain valuable insights from their datasets.
READ FULL TEXT