Deniable Encryption in a Quantum World

12/30/2021
by   Andrea Coladangelo, et al.
0

(Sender-)Deniable encryption provides a very strong privacy guarantee: a sender who is coerced by an attacker into "opening" their ciphertext after-the-fact is able to generate "fake" local random choices that are consistent with any plaintext of their choice. The only known fully-efficient constructions of public-key deniable encryption rely on indistinguishability obfuscation (iO) (which currently can only be based on sub-exponential hardness assumptions). In this work, we study (sender-)deniable encryption in a setting where the encryption procedure is a quantum algorithm, but the ciphertext is classical. We propose two notions of deniable encryption in this setting. The first notion, called quantum deniability, parallels the classical one. We give a fully efficient construction satisfying this definition, assuming the quantum hardness of the Learning with Errors (LWE) problem. The second notion, unexplainability, starts from a new perspective on deniability, and leads to a natural common view of deniability in the classical and quantum settings. We give a construction which is secure in the random oracle model, assuming the quantum hardness of LWE. Notably, our construction satisfies a strong form of unexplainability which is impossible to achieve classically, thus highlighting a new quantum phenomenon that may be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset