Dense Peelable Random Uniform Hypergraphs

07/10/2019
by   Martin Dietzfelbinger, et al.
0

We describe a new family of k-uniform hypergraphs with independent random edges. The hypergraphs have a high probability of being peelable, i.e. to admit no sub-hypergraph of minimum degree 2, even when the edge density (number of edges over vertices) is close to 1. In our construction, the vertex set is partitioned into linearly arranged segments and each edge is incident to random vertices of k consecutive segments. Quite surprisingly, the linear geometry allows our graphs to be peeled "from the outside in". The density thresholds f_k for peelability of our hypergraphs (f_3 ≈ 0.918, f_4 ≈ 0.977, f_5 ≈ 0.992, ...) are well beyond the corresponding thresholds (c_3 ≈ 0.818, c_4 ≈ 0.772, c_5 ≈ 0.702, ...) of standard k-uniform random hypergraphs. To get a grip on f_k, we analyse an idealised peeling process on the random weak limit of our hypergraph family. The process can be described in terms of an operator on functions and f_k can be linked to thresholds relating to the operator. These thresholds are then tractable with numerical methods. Random hypergraphs underlie the construction of various data structures based on hashing. These data structures frequently rely on peelability of the hypergraph or peelability allows for simple linear time algorithms. To demonstrate the usefulness of our construction, we used our 3-uniform hypergraphs as a drop-in replacement for the standard 3-uniform hypergraphs in a retrieval data structure by Botelho et al. This reduces memory usage from 1.23m bits to 1.12m bits (m being the input size) with almost no change in running time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset