Depth-Aware Multi-Grid Deep Homography Estimation with Contextual Correlation

07/06/2021
by   Lang Nie, et al.
26

Homography estimation is an important task in computer vision, such as image stitching, video stabilization, and camera calibration. Traditional homography estimation methods heavily depend on the quantity and distribution of feature points, leading to poor robustness in textureless scenes. The learning solutions, on the contrary, try to learn robust deep features but demonstrate unsatisfying performance in the scenes of low overlap rates. In this paper, we address the two problems simultaneously, by designing a contextual correlation layer, which can capture the long-range correlation on feature maps and flexibly be bridged in a learning framework. In addition, considering that a single homography can not represent the complex spatial transformation in depth-varying images with parallax, we propose to predict multi-grid homography from global to local. Moreover, we equip our network with depth perception capability, by introducing a novel depth-aware shape-preserved loss. Extensive experiments demonstrate the superiority of our method over other state-of-the-art solutions in the synthetic benchmark dataset and real-world dataset. The codes and models will be available at https://github.com/nie-lang/Multi-Grid-Deep-Homogarphy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset