Detection of Fibrosis in Cine Magnetic Resonance Images Using Artificial Intelligence Techniques
Background: Artificial intelligence techniques have demonstrated great potential in cardiology, especially to detect imperceptible patterns for the human eye. In this sense, these techniques seem to be adequate to identify patterns in the myocardial texture which could lead to characterize and quantify fibrosis. Purpose: The aim of this study was to postulate a new artificial intelligence method to identify fibrosis in cine cardiac magnetic resonance (CMR) imaging. Methods: A retrospective observational study was carried out in a population of 75 subjects from a clinical center of San Carlos de Bariloche. The proposed method analyzes the myocardial texture in cine CMR images using a convolutional neural network to determine local myocardial tissue damage. Results: An accuracy of 89 was observed for the validation data set and 70 the qualitative analysis showed a high spatial correlation in lesion location. Conclusions: The postulated method enables to spatially identify fibrosis using only the information from cine nuclear magnetic resonance studies, demonstrating the potential of this technique to quantify myocardial viability in the future or to study the lesions etiology
READ FULL TEXT