Detection of latent heteroscedasticity and group-based regression effects in linear models via Bayesian model selection

03/04/2019
by   Thomas A. Metzger, et al.
0

Standard linear modeling approaches make potentially simplistic assumptions regarding the structure of categorical effects that may obfuscate more complex relationships governing data. For example, recent work focused on the two-way unreplicated layout has shown that hidden groupings among the levels of one categorical predictor frequently interact with the ungrouped factor. We extend the notion of a "latent grouping factor" to linear models in general. The proposed work allows researchers to determine whether an apparent grouping of the levels of a categorical predictor reveals a plausible hidden structure given the observed data. Specifically, we offer Bayesian model selection-based approaches to reveal latent group-based heteroscedasticity, regression effects, and/or interactions. Failure to account for such structures can produce misleading conclusions. Since the presence of latent group structures is frequently unknown a priori to the researcher, we use fractional Bayes factor methods and mixture g-priors to overcome lack of prior information.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset