Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker
Joint object detection and online multi-object tracking (JDT) methods have been proposed recently to achieve one-shot tracking. Yet, existing works overlook the importance of detection itself and often result in missed detections when confronted by occlusions or motion blurs. The missed detections affect not only detection performance but also tracking performance due to inconsistent tracklets. Hence, we propose a new JDT model that recovers the missed detections while associating the detection candidates of consecutive frames by learning object-level spatio-temporal consistency through edge features in a Graph Neural Network (GNN). Our proposed model Sparse Graph Tracker (SGT) converts video data into a graph, where the nodes are top-K scored detection candidates, and the edges are relations between the nodes at different times, such as position difference and visual similarity. Two nodes are connected if they are close in either a Euclidean or feature space, generating a sparsely connected graph. Without motion prediction or Re-Identification (ReID), the association is performed by predicting an edge score representing the probability that two connected nodes refer to the same object. Under the online setting, our SGT achieves state-of-the-art (SOTA) on the MOT17/20 Detection and MOT16/20 benchmarks in terms of AP and MOTA, respectively. Especially, SGT surpasses the previous SOTA on the crowded dataset MOT20 where partial occlusion cases are dominant, showing the effectiveness of detection recovery against partial occlusion. Code will be released at https://github.com/HYUNJS/SGT.
READ FULL TEXT