Deterministic particle flows for constraining SDEs

10/25/2021
by   Dimitra Maoutsa, et al.
0

Devising optimal interventions for diffusive systems often requires the solution of the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear backward partial differential equation (PDE), that is, in general, nontrivial to solve. Existing control methods either tackle the HJB directly with grid-based PDE solvers, or resort to iterative stochastic path sampling to obtain the necessary controls. Here, we present a framework that interpolates between these two approaches. By reformulating the optimal interventions in terms of logarithmic gradients ( scores ) of two forward probability flows, and by employing deterministic particle methods for solving Fokker-Planck equations, we introduce a novel fully deterministic framework that computes the required optimal interventions in one shot.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset