Deterministic particle flows for constraining SDEs
Devising optimal interventions for diffusive systems often requires the solution of the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear backward partial differential equation (PDE), that is, in general, nontrivial to solve. Existing control methods either tackle the HJB directly with grid-based PDE solvers, or resort to iterative stochastic path sampling to obtain the necessary controls. Here, we present a framework that interpolates between these two approaches. By reformulating the optimal interventions in terms of logarithmic gradients ( scores ) of two forward probability flows, and by employing deterministic particle methods for solving Fokker-Planck equations, we introduce a novel fully deterministic framework that computes the required optimal interventions in one shot.
READ FULL TEXT