Differentially Private Generative Adversarial Networks for Time Series, Continuous, and Discrete Open Data

01/08/2019
by   Lorenzo Frigerio, et al.
0

Open data plays a fundamental role in the 21th century by stimulating economic growth and by enabling more transparent and inclusive societies. However, it is always difficult to create new high-quality datasets with the required privacy guarantees for many use cases. This paper aims at creating a framework for releasing new open data while protecting the individuality of the users through a strict definition of privacy called differential privacy. Unlike previous work, this paper provides a framework for privacy preserving data publishing that can be easily adapted to different use cases, from the generation of time-series to continuous data, and discrete data; no previous work has focused on the later class. Indeed, many use cases expose discrete data or at least a combination between categorical and numerical values. Thanks to the latest developments in deep learning and generative models, it is now possible to model rich-semantic data maintaining both the original distribution of the features and the correlations between them. The output of this framework is a deep network, namely a generator, able to create new data on demand. We demonstrate the efficiency of our approach on real datasets from the French public administration and classic benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset