Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning
Offline reinforcement learning (RL), which aims to learn an optimal policy using a previously collected static dataset, is an important paradigm of RL. Standard RL methods often perform poorly at this task due to the function approximation errors on out-of-distribution actions. While a variety of regularization methods have been proposed to mitigate this issue, they are often constrained by policy classes with limited expressiveness and sometimes result in substantially suboptimal solutions. In this paper, we propose Diffusion-QL that utilizes a conditional diffusion model as a highly expressive policy class for behavior cloning and policy regularization. In our approach, we learn an action-value function and we add a term maximizing action-values into the training loss of a conditional diffusion model, which results in a loss that seeks optimal actions that are near the behavior policy. We show the expressiveness of the diffusion model-based policy and the coupling of the behavior cloning and policy improvement under the diffusion model both contribute to the outstanding performance of Diffusion-QL. We illustrate our method and prior work in a simple 2D bandit example with a multimodal behavior policy. We then show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks for offline RL.
READ FULL TEXT