DIGRAC: Digraph Clustering with Flow Imbalance

06/09/2021
by   Yixuan He, et al.
0

Node clustering is a powerful tool in the analysis of networks. Here, we introduce a graph neural network framework with a novel scalable Directed Mixed Path Aggregation(DIMPA) scheme to obtain node embeddings for directed networks in a self-supervised manner, including a novel probabilistic imbalance loss. The method is end-to-end in combining embedding generation and clustering without an intermediate step. In contrast to standard approaches in the literature, in this paper, directionality is not treated as a nuisance, but rather contains the main signal. In particular, we leverage the recently introduced cut flow imbalance measure, which is tightly related to directionality; cut flow imbalance is optimized without resorting to spectral methods or cluster labels. Experimental results on synthetic data, in the form of directed stochastic block models and real-world data at different scales, demonstrate that our method attains state-of-the-art results on directed clustering, for a wide range of noise and sparsity levels, as well as graph structures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro